

Año académico 2014-15

Asignatura 11292 - Fenómenos Cooperativos y

Fenómenos Críticos

Grupo 1, 1S

Guía docente A
Idioma Castellano

Identificación de la asignatura

Asignatura 11292 - Fenómenos Cooperativos y Fenómenos Críticos

Créditos 1,5 presenciales (37,5 horas) 4,5 no presenciales (112,5 horas) 6 totales (150

horas).

Grupo Grupo 1, 1S (Campus Extens)

Período de impartición Primer semestre

Idioma de impartición Inglés

Profesores

Horario de atención a los alumnos

Profesor/a							
1 Totesot/a	Hora de inicio	Hora de fin	Día	Fecha inicial	Fecha final	Despacho	
Maximino San Miguel Ruibal msr260@uib.es	14:00h	15:00h	Miércoles	01/09/2014	19/07/2015	IFISC 213	
	09:30h	10:30h	Jueves	22/09/2014	24/07/2015	207 (Edifici	
Tomás Miguel Sintes Olives						Instituts	
tomas.sintes@uib.es						Universitaris	
						de Recerca)	

Contextualización

Asignatura compartida entre el Máster en Física de Sistemas Complejos (IFISC) y el Máster en Física Avanzada y Matemática Aplicada (Dpto. Física) cuyos objetivos se centran en la adquisición de conceptos y metodologías básicas en el estudio de fenómenos críticos, la dinámica de transiciones de fase y la formación y crecimiento de estructuras fuera del equilibrio.

Temas 1-5: El Prof. M. San Miguel es Dr. en Física y reconocido internacionalmente por sus contribuciones en campos diversos, particularmente en el estudio de transiciones de fase y fenómenos críticos. Es actualmente del director del IFISC. Tiene reconocidos todos los sexenios de investigación y quinquenios docentes posibles.

Temas 5-8: El Prof. T. Sintes es Dr. en Física, con ámplia experiencia en el estudio de la formación de estructuras fuera del equilibrio, procesos de agregación y nucleación en sistemas coloidales y poliméricos. Tiene reconocidos 3 sexenios de investigación y 4 quinquenios docentes.

Requisitos

Año académico 2014-15

Asignatura 11292 - Fenómenos Cooperativos y

Fenómenos Críticos

Grupo 1, 1S

Guía docente A Idioma Castellano

Recomendables

Es recomendable que el estudiante haya cursado las asignaturas de física estadística propias de la titulación de Grado en Física

Competencias

Específicas

- * Comprender los fenómenos críticos y cooperativos desde la perspectiva de la física interdisciplinar y los sistemas complejos (E4).
- * Conocer el significado de las leyes de escala y las técnicas del grupo de renormalización (E5).
- * Conocer los conceptos propios de la física estadística y de no equilibrio: modelos reticulares y de crecimiento (E7).
- * Comprender las técnicas y conceptos propios de las redes complejas (E15).
- * Comprensión de los conceptos básicos de la teoría de la información clásica y cuántica: entropía de Shanon, complejidad, colectividades, superposición cuántica, entrelazamiento, algoritmos (E18).

Genéricas

- * Adquirir la capacidad de desarrollar un trabajo de investigación en toda su extensión: asimilación de bibliografía, desarrollo del tema y elaboración de conclusiones (TG2).
- * Saber redactar de manera rigurosa los distintos pasos del trabajo de investigación y presentar los resultados para un público experto (TG3).
- * Desarrollar la capacidad de comprender y aplicar conocimientos de computación de altas prestaciones y métodos numéricos avanzados a problemas en el campo de los sistemas complejos (TG6).

Básica

* Se pueden consultar las competencias básicas que el estudiante tiene que haber adquirido al finalizar el máster en la siguiente dirección: http://estudis.uib.cat/es/master/comp_basiques/

Contenidos

Contenidos temáticos

- Tema 1. Introducción a las transiciones de fase y fenómenos críticos
- Tema 2. Modelos reticulares y clases de universalidad
- Tema 3. La aproximación de campo medio. La teoría de Landau. El Hamiltoniano de Ginzburg-Landau
- Tema 4. Invarianza de escala y elgrupo de renormalización
- Tema 5. Modelos cinéticos de Ising
- Tema 6. Cinética de procesos de agregación. El modelo DLA
- Tema 7. La teoría de percolación
- Tema 8. Crecimiento de superficies y la ecuación KPZ

Año académico

Asignatura

11292 - Fenómenos Cooperativos y
Fenómenos Críticos

Grupo

Grupo 1, 1S

Guía docente

Idioma

Castellano

Metodología docente

Actividades de trabajo presencial

Modalidad	Nombre	Tip. agr.	Descripción	Horas
Clases teóricas	Clases teóricas	Grupo grande (G)	Finalidad: adquirir las competencias genéricas y específica a través de la exposición de los contenidos temático que habrán de permitir al alumno la asimilación de conceptos y metodologías básicas en el estudio de fenómeno cooperativos y críticos. Metodología: clase magistral	e e

Al inicio del semestre estará a disposición de los estudiantes el cronograma de la asignatura a través de la plataforma UIBdigital. Este cronograma incluirá al menos las fechas en las que se realizarán las pruebas de evaluación continua y las fechas de entrega de los trabajos. Asimismo, el profesor o la profesora informará a los estudiantes si el plan de trabajo de la asignatura se realizará a través del cronograma o mediante otra vía, incluida la plataforma Campus Extens.

Actividades de trabajo no presencial

Modalidad	Nombre	Descripción		
Estudio y trabajo autónomo individual o en grupo	Trabajo autónomo	Resolución de un conjunto de problemas teóricos, a propuesta del profesor, con la finalidad de facilitar la asimilación de los conceptos, técnicas y metodologías expuestas en clase.		
Estudio y trabajo autónomo individual o en grupo	Trabajo autónomo	Aplicación de los conceptos y técnicas expuestas en clase a la resolución de un proyecto sobre transiciones de fase y fenómenos críticos (por ejemplo, la resolución del modelo de Ising 2-dimensional).	28	
Estudio y trabajo autónomo individual o en grupo	Trabajo autónomo	Se propondrá a los alumnos la realización de un trabajo numérico sobre procesos de crecimiento fuera del equilibrio. Para ello se facilitará a los alumnos bibliografía complementariaque les acerquen al lenguaje científico y trabajen las competencias de comprensión y exposición de los resultados científicos.	39.5	

Riesgos específicos y medidas de protección

Las actividades de aprendizaje de esta asignatura no conllevan riesgos específicos para la seguridad y salud de los alumnos y, por tanto, no es necesario adoptar medidas de protección especiales.

Evaluación del aprendizaje del estudiante

Año académico 2014-15

Asignatura 11292 - Fenómenos Cooperativos y

Fenómenos Críticos

Grupo 1, 1S

Guía docente A
Idioma Castellano

Trabajo autónomo

Modalidad Estudio y trabajo autónomo individual o en grupo

Técnica Trabajos y proyectos (no recuperable)

Descripción Resolución de un conjunto de problemas teóricos, a propuesta del profesor, con la finalidad de facilitar la

asimilación de los conceptos, técnicas y metodologías expuestas en clase.

Criterios de evaluación Los estudiantes aplicarán los conceptos, técnicas y metodologías desarrolladas a lo largo del curso para

resolver un conjunto de problemas propuestos por el profesor

Porcentaje de la calificación final: 40%

Trabajo autónomo

Modalidad Estudio y trabajo autónomo individual o en grupo

Técnica Trabajos y proyectos (no recuperable)

Descripción Aplicación de los conceptos y técnicas expuestas en clase a la resolución de un proyecto sobre transiciones

de fase y fenómenos críticos (por ejemplo, la resolución del modelo de Ising 2-dimensional).

Criterios de evaluación Presentación y exposición pública de un trabajo sobre transiciones de fase (modelo de Ising 2d)

Porcentaje de la calificación final: 25%

Trabajo autónomo

Modalidad Estudio y trabajo autónomo individual o en grupo

Técnica Trabajos y proyectos (no recuperable)

Descripción Se propondrá a los alumnos la realización de un trabajo numérico sobre procesos de crecimiento fuera del

equilibrio. Para ello se facilitará a los alumnos bibliografía complementariaque les acerquen al lenguaje

científico y trabajen las competencias de comprensión y exposición de los resultados científicos.

Criterios de evaluación Presentación y exposición pública de un trabajo sobre procesos de crecimiento fuera del equilibrio.

Porcentaje de la calificación final: 35%

Recursos, bibliografía y documentación complementaria

Bibliografía básica

- 1. J. M. Yeomans, "Statistical Mechanics of Phase Transitions". Oxford Sci. Pub (2002).
- 2. P. M. Chaikin and T. C. Lubensky, "Principles of Condensed Matter Physics". Cambridge Univ. Press (2000)
- 3. E. Stanley, "Introduction to Phase Transitions and Critical Phenomena". Oxford Sci. Pub (1987)
- 4. P. Meakin, "Fractals, scaling and growth far from equilibrium". Cambridge University Press, (1998).